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Abstract. We perform a calculation of the full momentum dependence of the gluon and ghost propagators
in pure SU(3) Yang-Mills theory by integrating Wilson’s exact renormalization group equations with respect
to an infrared cutoff k. The heavy quark potential in the quenched approximation can be expressed in
terms of these propagators. Our results strongly indicate a 1/p4-behaviour of the heavy quark potential for
p2 → 0. We show in general, that effective actions which satisfy Schwinger-Dyson equations, correspond
to (quasi-) fixed points of Wilson’s exact renormalization group equations.

1 Introduction

The computation of reliable phenomenological numbers
on the basis of non-perturbative QCD is still an unsolved
problem. Numerical methods seem to be required, as the
simulation of the theory on a space-time lattice. A semi-
phenomenological tool is provided by the Schwinger-Dyson
equations (SDEs), which are reviewed in this respect in
[1]. In the present paper we discuss an approach to non-
perturbative phenomena in non-abelian gauge theories,
which is based on the integration of exact renormaliza-
tion group equations (ERGEs) [2] in continuum quantum
field theory [3].

ERGEs describe the continuous evolution of effective
Lagrangians, or effective actions, with a scale (or infrared
cutoff) k, and allow to obtain the full quantum effective
action for k → 0 from a bare (microscopic) effective action
at a cutoff scale k = Λ. In contrast to standard renor-
malization group equations they describe this evolution
including all irrelevant couplings, or higher dimensional
operators, and are exact in spite of the appearance of only
one-loop diagrams. The price to pay is the fact that one
has to deal with an infinite system of coupled differential
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equations which for practical purposes requires some trun-
cation. The types of approximations or systematic expan-
sions, which can be employed, depend on the phenomena
under consideration:

One can expand the effective Lagrangian (or Hamilto-
nian or action) in powers of momenta or derivatives, but
keep all powers of the involved field. This kind of expan-
sion within the ERGEs is appropriate for the calculation
of effective potentials, which are required to study the ex-
istence and nature of phase transitions (see [4] for some
early literature).

Alternatively, one can expand the effective action in
powers of fields, keeping all powers of the momenta [5].
This allows, e.g., to study the formation of bound states by
using ERGEs to look for the appearance of poles in four-
point functions [6]. Finally, in order to describe dynamical
symmetry breaking, composite fields can be introduced [7,
8] and different expansions can be applied to the parts of
the effective action involving fundamental and composite
fields, respectively.

The ansatz of the present paper is based on the expan-
sion of the effective action in powers of fields, which allows
to study the full momentum dependence of the (gluon and
ghost) propagators. Within this expansion the knowledge
of the running 3- and 4-point functions is required in or-
der to integrate the ERGE for the running of the 2-point
function, the knowledge of the 4- and 5-point functions is
required for the ERGE of the 3-point function etc. [5, 6].

In the case of gauge theories this expansion gets to
some extent reorganized: due to gauge invariance (or, more
precisely, BRST invariance) parts of higher N-point func-
tions (with certain Lorentz and gauge index structures)
are completely determined by lower N-point functions.
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The usual procedure consists in imposing Slavnov-Taylor
identities (STIs) on the effective action, which can be
solved for “dependent” parts of N-point functions in terms
of “independent” ones. For instance, in the present case
of a pure Yang-Mills theory a gauge invariant term in the
effective action of the form

F a
µν(f(D2)Fµν)a (1.1)

(where D denotes the covariant derivative and f an ar-
bitrary function) describes simultaneously the “indepen-
dent” effective gluon propagator or 2-point function, and
certain “dependent” Lorentz and gauge index structures
of the 3-, 4- and higher gluonic N-point functions. Ad-
ditional “independent” structures of the gluonic 3- and
higher N-point functions are described in terms of gauge
invariant expressions involving at least three powers of the
field strength Fµν .

The application of ERGEs to gauge theories faces some
technical problems, since ERGEs are based on an inter-
mediate infrared momentum cutoff k, and such a cutoff
generally breaks gauge or BRST invariance [9–14]. One
way to deal with these problems is the modification of
the STIs [11, 13, 14]: the modified STIs impose “fine tun-
ing conditions” on those couplings in the effective action
at k 6= 0, which break gauge or BRST invariance. These
“fine tuning conditions” are such that they guarantee the
BRST invariance of the effective action for k → 0.

As a consequence of the (modified) STIs, at any value
of k, the “dependent” parts of the effective action can
thus be obtained either via the modified STIs in terms of
the “independent” parts at the scale k, or directly from
the integration of the ERGEs. Below we will employ ap-
proximations which consist in neglecting contributions to
the r.h. sides of the ERGEs. In the absence of approxima-
tions, both methods to obtain the dependent parts lead
to identical results. In the presence of approximations one
should determine the dependent parts of the effective ac-
tion from the modified STIs. Approximations on the r.h.
sides of ERGEs for independent parts of the effective ac-
tion do thus not imply a violation of the modified STIs.

In the presence of approximations one can nevertheless
study the ERGEs for the dependent parts of the effective
action and see, whether these ERGEs deviate strongly
from the corresponding equations obtained from the k-
derivatives of the modified STIs. As emphasized in [14],
this method allows for a numerical self-consistency check
of the approximation and will also be employed in the
present paper.

As described in Sect. 3, our approximation consists in
the neglect of the contribution of certain parts of the 3-
and 4-point functions to the ERGEs of the 2-point func-
tions. We take those parts of the 3- and 4-point functions
into account, however, which are determined in terms of
the 2-point functions through the standard part of the
STIs. In the purely gluonic sector these are those obtained
by an expansion of (1.1) in powers of the gauge field Aa

µ.
No approximation is imposed on the momentum de-

pendence of the 2-point functions (the gluon and ghost
propagators). These propagators by themselves are gauge

dependent and not directly observable quantities. A cer-
tain combination thereof, however, has a physical mean-
ing: The potential between infinitely heavy quarks can be
written as a product of the dressed quark-gluon vertices
and the full gluon propagator, and the quark-gluon vertex
function is given by the ghost propagator function. As a
result the heavy quark potential depends on both propa-
gator functions, which we calculate here in the quenched
approximation.

The aim of this paper is to see, how much information
on the heavy quark potential in quenched QCD can be ob-
tained within the approximation we employ, which is seen
to be self-consistent for a range of momenta p2 down to a
certain value p2 ∼ k0

2 (see Sect. 5). We find strong evi-
dence for a 1/p4-behaviour within the trustworthy range
of p2.

Both the method and the results can be compared with
the Schwinger-Dyson formalism. To this end we derive in
Sect. 2 a new and general relation between ERGEs and
SDEs: we show that effective actions, which satisfy SDEs
in the presence of an infrared cutoff k, are (quasi-) fixed
points of the ERGEs. Thus a search for fixed points of the
ERGEs for k → 0 is equivalent to the search for solutions
of SDEs.

Investigations of the gluon propagator have been per-
formed in the context of SDEs both in the axial [15, 16]
and Landau [17] gauge. In most cases solutions with a
singular behaviour like 1/p4 have been found to be con-
sistent. (A behaviour less singular than 1/p2 has been put
forward on phenomenological grounds in [18] and claimed
to exist in the axial gauge in [16], but recently such a form
of the gluon propagator in the infrared has been argued
to be inconsistent [19].) In the Landau gauge the ghost
sector has been completely neglected; thus it is much less
straightforward to relate these results to physical observ-
ables. In Sect. 6 we will discuss the comparison between
the ERGE and SDE approach in more detail.

The paper is organized as follows: in Sect. 2 we discuss
the derivation of the ERGEs, and their relation to SDEs.
In Sect. 3 we present our truncated ansatz for the pure
Yang-Mills action. In Sect. 4 we discuss the technical pro-
cedure, and in Sect. 5 our numerical results. Section 6 is
devoted to conclusions and an outlook.

2 ERGEs and SDEs

The form of the ERGEs can most conveniently be derived
assuming a path integral representation for the generating
functional of the theory. To this end we restrict ourselves,
for the time being, to the case of a single scalar field. It
is straightforward to supplement the following equations
with the appropriate minus signs, Lorentz and internal
indices in the cases of fermions, vector fields and internal
symmetries. To start with, the path integral formulation
of the theory requires for its proper definition a regular-
ization of the ultraviolet divergences. This will be imple-
mented through a modification of the propagator, i.e. the
term quadratic in the fields in the bare action. In addition
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we introduce an infrared cutoff k; the ERGEs will describe
the variation of the generating functional with k, where
the UV cutoff Λ will be held fixed. (In the framework of
the ERGEs, in particular in the application to gauge the-
ories, one can consistently set Λ = ∞, see below). The
UV and IR regularized generating functional of connected
Green functions GΛ

k (J) can then be represented as

e−GΛ
k (J) = N

∫
Dϕ e− 1

2 (ϕ,P −1
0 ϕ)−∆SΛ

k −Sint(ϕ)+(J,ϕ) ,

(2.1)

where Sint(ϕ) is independent of k. Here (J, ϕ) etc. is a
short-hand notation for

(J, ϕ) ≡
∫

d4p

(2π)4
J(p)ϕ(−p) . (2.2)

P−1
0 denotes the bare inverse propagator (e.g. P−1

0 (p2) =
p2 in the case of a massless scalar field), Sint the bare
interaction, and

∆SΛ
k =

1
2
(ϕ,RΛ

k ϕ) (2.3)

implements the UV and IR cutoffs. In the case of a mass-
less field a convenient choice for RΛ

k is

RΛ
k (p2) = p2 1 − e− p2

Λ2 + e− p2

k2

e− p2

Λ2 − e− p2

k2

, (2.4)

such that the full propagator

PΛ
k =

(
P−1

0 +RΛ
k

)−1
=
e− p2

Λ2 − e− p2

k2

p2 (2.5)

has the desired properties: exponential decay in the UV,
and finiteness in the IR.

The ERGE for GΛ
k describes its variation with k, at

fixed Λ. It can be obtained by differentiating (2.1) with
respect to k, and replacing ϕ under the path integral by
variations with respect to the sources. One finds

∂kGΛ
k (J) = −1

2

∫
d4q

(2π)4
∂kR

Λ
k (q2)

·
{

δ2GΛ
k (J)

δJ(q) δJ(−q) − δGΛ
k (J)

δJ(q)
δGΛ

k (J)
δJ(−q)

}
. (2.6)

The effective action ΓΛ
k (ϕ) is defined by the Legendre

transform of GΛ
k (J),

ΓΛ
k (ϕ) = GΛ

k (J) + (J, ϕ) , (2.7)

and it is convenient to define an effective action Γ̂Λ
k with

the IR cutoff terms subtracted:

Γ̂Λ
k = ΓΛ

k −∆SΛ
k (2.8)

Inserting the Legendre transformation into (2.6) one ob-
tains the ERGE for Γ̂Λ

k :

∂kΓ̂
Λ
k (ϕ) =

1
2

∫
d4q

(2π)4
∂kR

Λ
k (q2)

·
(

δ2Γ̂Λ
k (ϕ)

δϕ(q)δϕ(−q) +RΛ
k (q2)

)−1

. (2.9)

The boundary condition of Γ̂Λ
k (ϕ) for k → Λ can be ob-

tained from a careful consideration of the limit PΛ
k → 0

for k → Λ and reads

Γ̂Λ
Λ (ϕ) =

1
2
(
ϕ, (PΛ

0 )−1ϕ
)

+ Sint(ϕ) . (2.10)

On the other hand, for k → 0 Γ̂Λ
k (ϕ) becomes the full

quantum effective action of a theory, which is defined by
a bare interaction Sint(ϕ) and a fixed UV cutoff Λ. Since
the integration of the ERGEs allows us to relate effective
actions Γ̂Λ

k with different k, it can be used to compute Γ̂Λ
0

in terms of Γ̂Λ
Λ related to Sint by (2.10).

For most applications in particle physics this is actu-
ally all we want: there always exists a scale Λ (at least the
Planck scale) beyond which we expect unknown new in-
teractions or particles with masses larger than Λ. Physics
beyond Λ, including quantum fluctuations involving mo-
menta p2 with p2 ≥ Λ2, will certainly affect the form of
Sint or the effective action Γ̂Λ

Λ . Given an ansatz for Γ̂Λ
Λ ,

however, we are generally interested in the effect of quan-
tum fluctuations involving momenta with 0 ≤ p2 ≤ Λ2.
If we integrate the ERGE for Γ̂Λ

k from k = Λ down to
k = 0, these quantum fluctuations have been fully taken
into account.

Next we turn to the relation between ERGEs and SDEs.
To this end it is first convenient to write the ERGEs in
terms of the generating functional (or partition function)
ZΛ

k (J), where ZΛ
k (J) is given by

ZΛ
k (J) = e−GΛ

k (J) (2.11)

and the r.h. side of (2.11) by the path integral (2.1). The
ERGE for ZΛ

k (J) reads

∂kZ
Λ
k (J) = −1

2

∫
d4q

(2π)4
∂kR

Λ
k (q2)

δ2ZΛ
k (J)

δJ(q)δJ(−q) .(2.12)

The full set of SDEs can also most conveniently be ex-
pressed in terms of Z(J) [20]. They follow from the vanish-
ing of the path integral over a total derivative with respect
to ϕ. Subsequently we will consider the SDEs in the pres-
ence of an UV cutoff Λ and an IR cutoff k as in (2.1). In
terms of ZΛ

k (J) they read(
J(p) − (P−1

0 (p2) +RΛ
k (p2)

) δ

δJ(−p)

−δSint(ϕ)
δϕ(−p)

∣∣∣∣
ϕ = δ

δJ

)
ZΛ

k (J) = 0 . (2.13)
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After replacing ZΛ
k by GΛ

k according to (2.11), and GΛ
k

by ΓΛ
k according to (2.7), one obtains the SDEs for the

one-particle irreducible vertices, which are generally con-
sidered in the literature for k = 0 and Λ = ∞.

Let us now denote the entire l.h.side of (2.13) byΣΛ
k (J).

Next we evaluate the k-derivative of ΣΛ
k . The k-derivative

hits RΛ
k and ZΛ

k , and we have to use the ERGE (2.12).
The result can be written in the form

∂kΣ
Λ
k = −1

2

∫
d4q

(2π)4
∂kR

Λ
k (q2)

δ2ΣΛ
k

δJ(q)δJ(−q) .(2.14)

Thus we can make the following important statement: sup-
pose that we managed to find a functional ZΛ

k (J), which
satisfies the SDEs (2.13) for some value of k, identically
in the sources J . Thus the corresponding quantity ΣΛ

k (J)
vanishes. Now let us start to vary k. Since the r.h. side
of (2.14) vanishes, ΣΛ

k′ will still vanish for k′ 6= k. (Here,
of course, it has been used that ZΛ

k varies with k according
to the ERGE (2.12).) Thus we find that ZΛ

k′ still satisfies
the SDE (2.13), with k replaced by k′. In other words, if
we found a functional ZΛ

k which satisfies the SDE (2.13)
for some value of k, and compute ZΛ

k′ by integrating the
ERGE (2.12), ZΛ

k′ is guaranteed to satisfy the SDEs for
all values for k′. The same statement will hold for the
other generating functionals GΛ

k and ΓΛ
k . Thus generat-

ing functionals which satisfy k-dependent SDEs can be
named quasi-fixed points of the ERGEs (“quasi” because
they still depend on k). In particular, for k → 0, GΛ

0 and
ΓΛ

0 will satisfy the standard SDEs (without an infrared
cutoff, but still an ultraviolet cutoff Λ) if such a quasi-
fixed point is approached in the infrared.

Note that this property is independent of the form of
Sint in (2.13): Any SDE with any form of Sint in (2.13)
plays the role of a quasi-fixed point. (In particular, since
we work in the presence of an UV cutoff Λ, Sint can con-
tain arbitrary higher dimensional interactions suppressed
by powers of Λ.)

These formal arguments let us suspect, that results
obtained by the integration of the ERGEs can be quite
similar to results obtained by solving SDEs, although the
formal arguments no longer hold in a strict sense as soon
as the effective actions are approximated or truncated in
some way.

Let us note, for later use, that on the r.h. sides of the
ERGEs (2.6) and (2.9) we can replace RΛ

k (p2) by Rk(p2),
where Rk(p2) is defined by

Rk(p2) = RΛ=∞
k (p2) . (2.15)

In the limit Λ → ∞ the momentum integrations on the
r.h. sides of (2.6) and (2.9) are still exponentially damped
with the choice (2.4) for RΛ

k . Accordingly we denote by
Gk and Γ̂k the generating functionals, which satisfy the
ERGEs with RΛ

k replaced by Rk. Of course we are still
able to compute Γ̂k=0 in terms of an ansatz for Γ̂k=Λ. In
physical terms UV divergences do not appear, since Γ̂Λ is
already supposed to contain all quantum effects involving

momenta with p2 ≥ Λ2. We just loose the possibility to
formally equate Γ̂Λ with Sint appearing in a path integral
of the form of (2.1), although a slightly different, more in-
volved path integral representation for Γ̂k still exists [21].
From universality we expect in any case, that Γ̂0 is inde-
pendent of minor modifications of Γ̂Λ, so one choice is a
priori as good as the other. Thus, subsequently, we define
a theory by the ERGEs (2.6) or (2.9), with RΛ

k replaced
by Rk, and a finite ansatz for Γ̂Λ (or GΛ) at a fixed scale
Λ.

3 Yang-Mills theories

The application of ERGEs to gauge theories requires some
treatment of the breaking of gauge invariance, which is in-
troduced through the intermediate IR cutoff k. Here we
use the method of imposing modified STIs [11, 13, 14] in
the formulation presented in [13, 14]. In [14], in particular,
ERGEs for SU(3) Yang-Mills theory have already been
integrated numerically within an approximation, where
only marginal and relevant couplings in the effective ac-
tion have been taken into account.

In the present paper we extend the form of the effective
action considerably, namely we allow for an arbitrary mo-
mentum dependence of the gluon and ghost propagators.
Again we consider the SU(3) Yang-Mills theory in four-
dimensional Euclidean space–time, where the classical ac-
tion reads

S=
∫

d4x

{
1
4F

a
µνF

a
µν +

1
2α
∂µA

a
µ∂νA

a
ν

+∂µc̄
a
(
∂µc

a + gfa
bcA

b
µc

c
)

−Ka
µ

(
∂µc

a + gfa
bcA

b
µc

c
)

−La 1
2gf

a
bcc

bcc + L̄a 1
α
∂µA

a
µ

}
(3.1)

with

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfa

bcA
b
µA

c
ν . (3.2)

We have included the usual gauge fixing and ghost parts
and coupled external sources to the BRST variations

δAa
µ=
(
∂µc

a + gfa
bcA

b
µc

c
)
ζ

δca= 1
2gf

a
bcc

bccζ

δc̄a=− 1
α
∂µA

a
µζ , (3.3)

where ζ is a Grassmann parameter. The invariance of S at
L̄ = 0 under BRST transformations can then be expressed
as

0=
∫

d4x

{
δAa

µ

δS

δAa
µ

+ δca
δS

δca
+ δc̄a

δS

δc̄a

}∣∣∣∣
L̄=0

=ζ
∫

d4x

{
δS

δKa
µ

δS

δAa
µ

− δS

δLa

δS

δca
− δS

δL̄a

δS

δc̄a

}∣∣∣∣
L̄=0

. (3.4)
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IR cutoffs in the gluon and ghost propagators will be
introduced by adding a term of the form

∆Sk =
1
2
(Aa

µ, Rk,µν A
a
ν) + (c̄a, R̃k c

a) (3.5)

to the action. Explicit expressions for Rk,µν and R̃k will
be given below. The effective action

Γk(A, c, c̄,K, L, L̄) ≡ Γ̂k +∆Sk (3.6)

satisfies an ERGE of the form [13, 14]

∂kΓ̂k=
∫

d4p

(2π)4

{
1
2
∂kRk,µν(p2)

(
Γ

(2)
k

)−1

Aa
ν(−p),Aa

µ(p)

− ∂kR̃k(p2)
(
Γ

(2)
k

)−1

−c̄a(−p),ca(p)

}
. (3.7)

Here
(
Γ

(2)
k

)−1

Aa
µ(−p),Ab

ν(q)
is the (Aa

µ(−p), Ab
ν(q))-component

of the inverse of the matrix Γ
(2)
k = δ2Γk/δϕ̄ δϕ of sec-

ond derivatives of Γk with respect to the fields ϕ̄B =
{Aa

µ(−p),−c̄a(−p), ca(−p)} and ϕB = {Aa
µ(p), ca(p),

c̄a(p)}, where the index of ϕ̄ and ϕ runs over the differ-
ent fields, momenta, and Lorentz and gauge indices. For
k → 0, Γ̂0 has to satisfy the STI (3.4). To this end Γ̂k

has to satisfy, in particular at the starting point k = Λ, a
modified STI of the form [13, 14]∫

d4p

(2π)4

{
δΓ̂k

δKa
µ(−p)

δΓ̂k

δAa
µ(p)

− δΓ̂k

δLa(−p)
δΓ̂k

δca(p)

− δΓ̂k

δL̄a(−p)
δΓ̂k

δc̄a(p)

}∣∣∣∣∣
L̄=0

=
∫

d4p

(2π)4
∑
B

[
Rk,µν(p2)

δ2Γ̂k

δKa
ν (−p) δϕB

(
Γ

(2)
k

)−1

ϕ̄B ,Aa
µ(p)

− R̃k(p2)
δ2Γ̂k

δLa(−p) δϕB

(
Γ

(2)
k

)−1

ϕ̄B ,ca(p)

− R̃k(p2)
δ2Γ̂k

δL̄a(−p) δϕB

(
Γ

(2)
k

)−1

ϕ̄B ,c̄a(p)

]∣∣∣∣∣
L̄=0

. (3.8)

The crucial point is that once (3.8) is satisfied for k = Λ,
it will be satisfied by Γ̂k for any k < Λ provided Γ̂k is
obtained from Γ̂Λ by integrating the ERGE. In particular
Γ̂k=0 will satisfy the standard STI (3.4), if the IR cutoff
functions Rk,µν and R̃k vanish identically for k → 0.

Most importantly, Γ̂k at the starting point k = Λ can
thus not be identified with the classical action (3.1), but it
has to contain symmetry breaking terms specified by the
need to satisfy (3.8). The origin of these symmetry break-
ing terms can be understood from the interpretation of
Γ̂Λ as a quantum effective action, where momenta p2 with
p2 ≥ Λ2 have already been integrated out; the symmetry
breaking induced by this “IR” cutoff Λ then generates the
symmetry breaking terms in Γ̂Λ.

As stated above, our approach towards the integration
of the ERGE (3.7) is based on an expansion in powers of
the gluon and ghost fields. We are interested in the form
of the gluon and ghost propagators, since a certain com-
bination thereof (see below) determines the heavy quark
potential in the quenched approximation. It is thus essen-
tial to allow for an arbitrary momentum dependence of the
2-point functions in our ansatz for the effective action.

Expanding the ERGE (3.7) in powers of fields one eas-
ily finds that the full 3-gluon, 4-gluon, ghost-gluon and
4-ghost vertices appear on the r.h. sides of the ERGEs for
the gluon and ghost propagators. In the sequel we will re-
fer to parts of the vertices with certain Lorentz and gauge
index structures as “operators”. One can distinguish two
different kinds of such operators:

a) “Independent” operators, which are not fixed in terms
of the propagators or other operators by the STI. An
example is the contribution to the 4-gluon vertex ob-
tained from a term involving four powers of the field
strength F a

µν in the effective action. (The r.h. side of
the corresponding ERGE depends on the full 2-, 3-, 4-,
5- and 6-point functions.)

b) “Dependent” operators, which are fixed by the modi-
fied STI in terms of the propagators and operators of
type a). In general (3.8) yields a system of coupled non-
linear integral equations for the dependent operators.
Examples are the operators corresponding to those
parts of the 3- and 4-gluon vertices, which are obtained
by an expansion of the expression F a

µν(f(D2)Fµν)a in
powers of the gauge field (see (1.1)), and a gluonic mass
term (which we do not consider as part of the gluon
propagator in this context).

Since our goal is the determination of the propagators,
the only important operators for our purpose are those,
that contribute significantly to the ERGEs for the 2-point
functions. In a first approximation, we will neglect the
contributions of the operators of type a), which are the
ones not determined by the STI. Such an approximation
is only expected to hold for a limited range of scales k, and
can to some extent be checked a posteriori (see below). In
any case, it turns the ERGE (3.7) into a closed system of
integro-differential equations for the propagators, which
can be integrated numerically.

Furthermore, with the simpler ansatz used in [14] it
has proved to be permissible in a quantitative sense to
determine the operators of type b) through the standard
form of the STI ( (3.8) with a vanishing r.h. side) instead
of using the modified STI, with the important exception of
the gluon mass term. Again, this may only be true within
a certain range of k. We will therefore proceed in the same
way here, i.e. we assume that we can approximate the op-
erators of type b) by the corresponding ones obtained from
the standard STI, as far as their quantitative contribution
to the flow of the 2-point functions is concerned.

In practical terms, this assumption implies a tremen-
dous technical simplification in the determination of these
operators. For example, for the 3- and 4-gluon vertices
we can use the expressions resulting from an expansion of
F a

µν(f(D2)Fµν)a in powers of Aa
µ (apart from a momen-
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tum-dependent field renormalization, cf. the explicit ex-
pressions in the appendix). We consider it to be essential,
however, to use the modified form of the STI to fix the
gluon mass term, which is a truly relevant parameter of
the effective action.

Let us stress that the approximation we employ for
the operators of type b) does not imply that we are work-
ing with an effective action, which violates the modified
STI. In principle we could, for every value of k 6= 0, de-
termine the operators of type b) by solving the system
of coupled non-linear integral equations given by (3.8), so
that the resulting effective action would be in accord with
the modified STI. What we actually do is to approximate
the contributions of the operators of type b) to the flow
of the 2-point functions by the contributions of the cor-
responding operators obtained from the standard STI, in
the same way as we neglect the contributions of the oper-
ators of type a).

It is important to note, that there exists a non-trivial
quantitative check for the self-consistency of the approx-
imations employed. It is based on the consistency of the
ERGE with the k-derivative of the modified STI in the
absence of approximations, and will be discussed in more
detail in the next section. In particular, this self-consisteny
condition will be used to determine the range of scales k,
where we consider the approximations to be permissible.

The approximations employed here can be improved
systematically by taking more and more operators of type
a) into account, as well as by using the operators of type b)
corresponding to a (partial or complete) solution of (3.8).
The purpose of the present paper is to see, which results
for the heavy quark potential will be obtained within the
“minimal” approach described above.

Let us now write down those terms in the k-dependent
effective action, which we take into account on the r.h.
sides of the ERGEs for the 2-point functions. In a slight
abuse of notation, we will denote this part of the effective
action by Γ̂k. Firstly, we include the gluon and ghost 2-
point functions themselves, which are given by the momen-
tum-dependent functions f1,k and f2,k, respectively, and
where we take a mass term for the gluons into account.
Since we will consider the Landau gauge later on, it is not
necessary to introduce a further momentum-dependent
function in the longitudinal part of the gluon 2-point func-
tion here. Secondly, we describe the 3-gluon, 4-gluon and
ghost-gluon vertices of the type b) above (determined from
the standard STI), which we take into account on the r.h.
sides of the ERGEs for the 2-point functions. Finally we
include the external source terms containing Ka

µ, La and
L̄a, which are required to formulate the STI. These latter
terms are constrained by two further identities satisfied
by Γ̂k, which can be shown to be invariant under the RG
flow [11, 13, 14]:

∂µ
δΓ̂k

δKa
µ

=
δΓ̂k

δc̄a
, (3.9a)

δΓ̂k

δL̄a
=

1
α
∂µA

a
µ . (3.9b)

Explicitly, then, our ansatz for Γ̂k reads

Γ̂k(A, c, c̄,K, L, L̄)

=
1
2

∫
p1,p2

Aa
µ(p1)

{(
p2
1 δµν − p1µ p1ν

)
f1,k(p2

1)

+
p1µ p1ν

α
+m2

k δµν

}
Aa

ν(p2)

+ i gk f
a

bc

∫
p1,p2,p3

f3,µνρ(p1, p2, p3)

×Aa
µ(p1) Ab

ν(p2) Ac
ρ(p3)

+ g2
k f

a
bc f

a
de

∫
p1,...,p4

f4,µνρσ(p1, p2, p3, p4)

×Ab
µ(p1) Ac

ν(p2) Ad
ρ(p3) Ae

σ(p4)

+
∫

p1,p2

c̄a(p1) p2
1 f2,k(p2

1) c
a(p2)

+ i gk f
a

bc

∫
p1,p2,p3

c̄a(p1) p1,µ

×f2,k(p2
1) f

−1
2,k (p2

2) A
b
µ(p2) cc(p3)

+ i

∫
p1,p2

Ka
µ(p1) p1µ f2,k(p2

1) c
a(p2)

− gk f
a

bc

∫
p1,p2,p3

Ka
µ(p1) f2,k(p2

1) f
−1
2,k (p2

2) A
b
µ(p2) cc(p3)

− gk

2
fa

bc

∫
p1,p2,p3

La(p1) cb(p2) cc(p3)

− i

α

∫
p1,p2

L̄a(p1) p1µ A
a
µ(p2) , (3.10)

where∫
p1,...,pn

≡
∫ n∏

i=1

(
d4pi

(2π)4

)
· (2π)4 δ4

(
n∑

i=1

pi

)
.(3.11)

The k-dependent 3-gluon and 4-gluon vertex functions
f3,µνρ and f4,µνρσ are given in terms of the gluon propa-
gator function f1,k and the ghost propagator function f2,k

in the appendix.
In order to establish the connection with the heavy

quark potential, we introduce quark fields in the effective
action. In the limit where the quark mass tends to in-
finity, all quantum corrections corresponding to diagrams
which contain inner quark lines, are naively suppressed
by powers of the quark mass. On the other hand, the STI
requires a momentum dependent quark-gluon vertex func-
tion, where the momentum dependence involves the func-
tion f2,k above. (Within the standard approach, the ori-
gin of this non-trivial contribution is due to UV divergent
diagrams, which are not suppressed by the heavy quark
mass.) After an eventual redefinition of the quark fields,
such that their kinetic term is properly normalized, the
standard STI constrains the quark-gluon coupling in the
effective action to be of the form

− gk λ
a
AB

∫
p1,p2,p3

ψ̄A(p1) γµ f
−1
2,k (p2

2) A
a
µ(p2) ψB(p3) ,

(3.12)
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where λ denotes the SU(3) generators in the fundamen-
tal representation. Here we have implicitely used the Kc-
coupling from (3.10) and the fact that the quantum cor-
rections to the vertices, which couple external sources to
the BRST-variations of the quark fields, are suppressed
by powers of the quark mass in the Landau gauge.

Let us now consider the 2-point function Vk of the
quark currents Ja

µ , given by

Ja
µ = λa

AB ψ̄A γµ ψ
B . (3.13)

In the heavy quark limit, the only contribution to Vk

comes from the dressed one-gluon exchange diagram, so
from (3.12) and the form of the gluon propagator we ob-
tain the current 2-point function

Vk(p2) =
g2

k

p2f1,k(p2) f2
2,k(p2)

. (3.14)

We have omitted the gluon mass term m2
k in our definition

of Vk(p2). In principle we could have replaced the factor
p2f1,k(p2) in the denominator of Vk(p2), which is due to
the gluon propagator, by the factor involving m2

k and the
infrared cutoff term. However, once the integration of the
ERGE is pursued down to k = 0, the modified STI (3.8)
turns into the standard STI and enforces m2

k=0 = 0, and
the infrared cutoff term vanishes identically. Using (3.14)
to define Vk(p2), these effects have been anticipated, and
Vk(p2) corresponds more closely to the physical function
V0(p2) already at finite k.

In the heavy quark limit Vk(p2) can be identified, up
to trivial factors, with the Fourier transform of the poten-
tial between quarks in quenched QCD. Although we will
compute the gluon and ghost propagator functions f1,k

and f2,k individually by integrating the ERGEs, it is only
the combination appearing in (3.14), which has a physical
meaning.

A priori it may seem that the functions f1,k and f2,k

can be changed at will by redefining the gluon, ghost
and anti-ghost fields in the form of multiplication with
momentum dependent functions. We have checked explic-
itly, however, that the STI restricts the relations between
the vertices and the two-point functions such that finally
all possible field redefinitions cancel in the expression for
Vk(p2).

As noted above and in [11, 13, 14], m2
k in Γ̂k is fixed in

terms of the other parameters in Γ̂k by the non-vanishing
r.h. side of (3.8), where we use our ansatz (3.10) for Γ̂k.
After a consideration of terms ∼ A · c of (3.8), one arrives
at a non-linear relation of the form

m2
k =

g2
k

(4π)2
k2 ST(k2,m2

k, f1,k, f2,k) , (3.15)

where we have anticipated the Landau gauge and omitted
the gauge parameter α on the r.h. side. The expression
ST(k2, ...) involves momentum integrations over a num-
ber of one-loop diagrams, in which the gluon and ghost
propagators and hence the functions f1,k and f2,k appear,
and will be given in the appendix. Generally (3.15) can be

solved for m2
k only numerically, but in any case m2

k is not
an independent parameter of Γ̂k.

To determine the flow of the coupling parameter gk,
we will use the ERGE for the KcA-vertex with vanishing
momenta. Then it turns out, that in the Landau gauge gk

actually does not run at all with k; it remains a constant,
which will be specified once and for all at the starting
point k = Λ. (It is straightforward, on the other hand,
to define a “physical” running coupling in terms of the
dressed one-gluon exchange diagram or the function Vk

of (3.14), which runs with k due to the running of f1,k

and f2,k. Within our approximation this running agrees
to one-loop order with the usual perturbative running, as
we have checked explicitly.) In the Landau gauge the inde-
pendent running parameters in Γ̂k are thus only the two
functions f1,k and f2,k. The aim will be the determination
of these quantities by integrating the ERGEs with suitable
boundary conditions.

Finally we have to introduce and specify the IR cutoff
term ∆Sk in (3.5). If we demand a reasonable behaviour
of the full propagators including the IR cutoff terms which
appear on the r.h. side of the ERGE (3.7), we are lead to
more sophisticated choices than an expression of the form
of (2.4) with Λ → ∞. (Note that Rk,µν and R̃k have to
vanish identically for k → 0 in order that the modified
STI (3.8) turns into the standard one (3.4). To this end Λ
has to be put equal to ∞ inside Rk,µν and R̃k, which is
perfectly consistent as discussed in Sect. 2.) First, we do
not want to generate any poles on the real axis through
the introduction of ∆Sk. This enforces a dependence of
Rk,µν and R̃k on the functions f1,k and f2,k such that
they are proportional to f1,k and f2,k, respectively. Now,
however, it is no longer automatically guaranteed, that
∆Sk serves as an IR cutoff if, e.g., f1,k(p2) vanishes for
p2 → 0 (as we might possibly expect). This problem is
overcome by writing the functions f1,k and f2,k also in the
exponents. Taking the presence of the gluon mass termm2

k
into account, our choice of the cutoff functions thus reads

Rk,µν(p2)

=
(
p2f1,k(p2) +m2

k

) e−(p2f1,k(p2)+m2
k)/k2

1 − e−(p2f1,k(p2)+m2
k
)/k2

×
(
δµν − pµpν

p2

)
+
(
p2

α
+m2

k

)
e−(p2/α+m2

k)/k2

1 − e−(p2/α+m2
k
)/k2

pµpν

p2 , (3.16a)

R̃k(p2) = p2f2,k(p2)
e−p2f2,k(p2)/k2

1 − e−p2f2,k(p2)/k2 . (3.16b)

In order to obtain the full propagators, these terms
have to be added to the quadratic terms ∼ A ·A or ∼ c̄ · c
in the action Γ̂k. Let us at this point remark a subtlety
which has already been noted in [14]: the modified STI
(3.8) determines, after its expansion to O(A · c), only the
longitudinal part of the gluon propagator and requires the
presence of a term of the form m2

k pµpν/p
2. Then it is the
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∂k

∂k

=

= − 1
2

− −

+

Fig. 1. Diagrammatic form of the ERGEs for the ghost prop-
agator function f2,k and the gluon propagator function f1,k.
Internal curly lines denote the full gluon propagator, internal
dotted lines the full ghost propagator and full points the full
vertices from the ansatz (3.10) for Γ̂k. The crossed circles de-
note insertions of ∂kRk,µν resp. ∂kR̃k

condition of locality of the effective action, i.e. the need
to cancel terms of the form pµpν/p

2, which requires the
presence of the same mass term m2

k in the transverse part
of the gluon propagator. Only after this consideration has
been completed, we are allowed to approach the Landau
gauge α = 0. In [14] we had checked that α = 0 is pre-
served by the RG flow (and IR stable), and that the r.h.
sides of the ERGEs remain finite. Since this choice simpli-
fies the calculations considerably, we will work in the Lan-
dau gauge throughout the rest of this paper. The full gluon
and ghost propagators, as derived from Γk = Γ̂k + ∆Sk,
then read

1 − e−(p2f1,k(p2)+m2
k)/k2

p2f1,k(p2) +m2
k

(
δµν − pµpν

p2

)
(3.17a)

and

1 − e−p2f2,k(p2)/k2

p2f2,k(p2)
, (3.17b)

respectively.

4 Procedure

Let us now turn to the computation of f1,k and f2,k by in-
tegrating the ERGEs. The ERGE for f1,k can most easily
be obtained by studying the terms quadratic in A of the
functional ERGE (3.7). Its diagrammatic form is shown in
Fig. 1. Note that the 3- and 4-gluon vertices are more com-
plicated than the ones of a classical Yang-Mills action and
are given in the appendix. The form of the 3-gluon vertex
coincides with the one used in the framework of SDEs [17]
because it corresponds to a special solution of the stan-
dard STIs [22] (up to a momentum-dependent field redef-
inition); we have not been able to find the corresponding
4-gluon vertex elsewhere in the literature. The ERGE for
f2,k is obtained from the terms ∼ c̄c of (3.7), and is also
shown in diagrammatic form in Fig. 1.

The crossed circles in Fig. 1 denote insertions of
∂kRk,µν resp. ∂kR̃k according to the ERGE (3.7). Due to

the complicated expressions (3.16) for these cutoff func-
tions, i.e. their dependence on m2

k, f1,k and f2,k, the k-
derivatives ∂k acting on Rk,µν and R̃k have to be decom-
posed into partial derivatives ∂/∂k, ∂f1,k/∂k·∂/∂f1,k, etc.

The system of ERGEs for f1,k and f2,k (in the Landau
gauge), which is obtained from the diagrams of Fig. 1, is
thus of the form

∂kf1,k=
g2

Λ

(4π)2
(
h0

1(k
2,m2

k, f1,k, f2,k)

+∂kf1,k ∗ h1
1(k

2,m2
k, f1,k, f2,k)

+ ∂kf2,k ∗ h2
1(k

2,m2
k, f1,k, f2,k)

+∂km
2
k · h3

1(k
2,m2

k, f1,k, f2,k)
)
, (4.1a)

∂kf2,k=
g2

Λ

(4π)2
(
h0

2(k
2,m2

k, f1,k, f2,k)

+∂kf1,k ∗ h1
2(k

2,m2
k, f1,k, f2,k)

+ ∂kf2,k ∗ h2
2(k

2,m2
k, f1,k, f2,k)

+∂km
2
k · h3

2(k
2,m2

k, f1,k, f2,k)
)

. (4.1b)

The evaluation of the expressions hj
i requires a numer-

ical computation of the one-loop integrals appearing in
Fig. 1. The ∗ denotes corresponding convolutions with re-
spect to the loop momentum. It is evident from (4.1), that
we still need the knowledge of ∂km

2
k in order to determine

∂kf1,k and ∂kf2,k. ∂km
2
k can be obtained from the same

diagrams in Fig. 1, which are relevant for ∂kf1,k, in the
limit of vanishing external momentum. Again this gives
us an expression of the form

∂km
2
k=

g2
Λ

(4π)2
(
h0

3(k
2,m2

k, f1,k, f2,k)

+∂kf1,k ∗ h1
3(k

2,m2
k, f1,k, f2,k)

+ ∂kf2,k ∗ h2
3(k

2,m2
k, f1,k, f2,k)

+∂km
2
k · h3

3(k
2,m2

k, f1,k, f2,k)
)

. (4.2)

Alternatively, we can obtain a similar expression by
differentiating (3.15) with respect to k. We thus have two
different equations at our disposal to complete the system
(4.1). In the absence of approximations, the two different
completed systems would yield exactly the same results, as
follows from the compatibility of the full (3.7) and (3.8).
Since the r.h. sides of the (4.2) and (3.15) involve our
ansatz (3.10) for Γ̂k rather than the full effective action,
however, we obtain different results. (Nevertheless, they
agree on the one-loop level [14].) The use of Γ̂k instead
of the full effective action involves two different kinds of
approximations related to the operators of type a) and b),
respectively (see the previous section).

The compatibility of the two completed systems of
equations considered above turns out to be sensitive to
both kinds of approximations. As in [14], we will use the
difference between the corresponding results as a quanti-
tative measure of the inadequacy of the approximations
(for the respective scale k). Here we concentrate on the
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effect of the approximations on the gluon and ghost prop-
agator functions: We will take a certain discrepancy (in
fact 10%) in the results for ∂kf1,k or ∂kf2,k at some value
of the momentum as an indication that the approxima-
tions have a considerable influence on the contributions
to the flow of f1,k or f2,k.

We are of course aware of the fact that the described
consistency check merely yields a necessary condition for
the validity of the approximation, not a sufficient one.
There exists, however, another a-posteriori justification
for our procedure: The results we obtain will show a re-
markable degree of universality in the sense of [23] (see the
next section) as long as k > k0, where the scale k0 is de-
termined from the above consistency condition. Since uni-
versality is only expected to hold when gauge symmetry
is taken into account properly, and no significantly con-
tributing operators are neglected, this property provides
a strong indication of the consistency of our procedure.

In practice we will use the form of (4.2) as derived
from the ERGE (3.7) in order to complete the system of
linear equations for ∂kf1,k and ∂kf2,k. The other system of
equations, with (4.2) taken from the derivative of (3.15),
will be employed for the consistency check at every scale
k.

Given the ERGEs for f1,k and f2,k, we still need suit-
able boundary conditions in order to proceed with the
numerical integration. These boundary conditions can be
chosen such that Γ̂Λ resembles as close as possible the
classical (bare) Yang-Mills action (3.1). One would thus
choose, at k = Λ, f1,Λ(p2) = f2,Λ(p2) = 1 and gΛ not
too large in order to start in the perturbative regime. It is
possible, however, to improve the form of the effective ac-
tion at the starting point k = Λ. By definition, Γ̂Λ should
include all quantum effects involving internal momenta
p2 ≥ Λ2. On the one hand these are certainly small for a
small coupling gΛ, on the other hand it is fairly straight-
forward to include them to one-loop order. To this end one
has to calculate the one-loop diagrams, which contribute
to the gluon and ghost propagator, with IR cutoff func-
tions Rk as in (3.16) and k = Λ. (Inside these cutoff func-
tions we can set, to one-loop order, f1,k(p2) = f2,k(p2) = 1
and m2

k = 0). The diagrams have to be regularized in the
UV (e.g. dimensionally) and renormalized such that, e.g.,
the renormalization conditions

f1,Λ(0) = 1 , f2,Λ(0) = 1 (4.3)

are satisfied. As a result one obtains

f1,Λ(p2)=1 + δf1-loop
1 (p2) ,

f2,Λ(p2)=1 + δf1-loop
2 (p2) (4.4)

where the one-loop contributions δf1-loop
i are given in the

appendix. For large p2 the functions δf1-loop
i behave asymp-

totically as

δf1-loop
1 (p2)∼ g2

Λ

(4π)2
· 13

2
ln
(
p2

Λ2

)
,

δf1-loop
2 (p2)∼ g2

Λ

(4π)2
· 9
4

ln
(
p2

Λ2

)
. (4.5)

What we have achieved now is an appropriate behaviour
of these functions even for momenta p2 � Λ2, far above
the starting scale, provided g2

Λ/(4π)2 · ln(p2/Λ2) � 1.
Now Vk(p2) of (3.14) has the appropriate logarithmic p2-
dependence even for p2 � Λ2, corresponding to a one-loop
RG improvement of the “physical” coupling constant:

Vk=Λ(p2 � Λ2) ∼ g2
Λ

p2
(

1 +
11g2

Λ

(4π)2
ln
(
p2

Λ2

)) . (4.6)

As boundary conditions for the integration of the
ERGEs we thus use propagator functions fi,Λ according
to (4.4), the numerical solution of (3.15) for m2

Λ, and
values for gΛ (as the only free parameter) from gΛ = 2.0
down to gΛ = 1.4.

It is clear that, in order to integrate the ERGEs (4.1)
for the functions f1,k and f2,k, numerical methods have
to be employed. To this end we need a parametrization of
these functions, which allows for a reliable fit for all val-
ues of the scale k. Since these functions always behave like
fi,k(p2 → ∞) → 1 + δf1-loop

i , the following parametriza-
tion turns out to be convenient:

fi,k(p2) = 1 −
∑

j

αi
j

1 + γi
j p

2 + δf1-loop
i (p2) (4.7)

with up to 6 pairs of parameters αi
j , γ

i
j for i = 1, 2, re-

spectively.
Next we have to diagonalize (4.1) in the space of mo-

menta p2. To this end we evaluate the functions hj
i in (4.1)

and (4.2) for a number of momenta p2 = p2
j with up to 35

different values for p2
j in the range 10−1k2

0 to 10Λ2, where
k2
0 is determined dynamically (see below). (It turns out

to be convenient to space the momenta p2
j equally on a

logarithmic scale.) By solving the system of linear alge-
braic equations we then obtain expressions for ∂kfi,k(p2

j )
and ∂km

2
k. One step in the integration of the ERGE then

amounts to a computation of

fi,k+∆k(p2
j ) = fi,k(p2

j ) +∆k · ∂kfi,k(p2
j ) (4.8)

with |∆k/k| < 3 · 10−2, and a subsequent determination
of the new fit parameters αi

j , γ
i
j of (4.7).

The new value of the parameter m2
k gets determined

by a new numerical solution of (3.15) rather than by the
numerical integration of ∂km

2
k; since it is a relevant param-

eter (the only one), for k2 � Λ2 accumulated theoretical
and numerical errors would easily generate a m2

k of O(Λ2)
instead of O(k2), as it should be according to (3.15).

Of course we have varied many details of the numer-
ical procedure in order to test the robustness of the fi-
nal results. An upper limit of ∼ 35 different values for
p2

j is dictated by the finite amount of available comput-
ing time, and this also keeps us from choosing arbitrar-
ily small values for the gauge coupling gΛ at the starting
point k2 = Λ2, since then the ERGEs would have to be
integrated over arbitrarily many orders of magnitude of
the scale k2 in order to arrive at the physically interesting
non-perturbative regime.
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5 Results

Our results can most easily be represented in terms of a
function Fk(p2),

Fk(p2) =
1
g2

Λ

f1,k(p2) f2
2,k(p2) , (5.1)

which is simply related to the potential Vk(p2) in (3.14):

Vk(p2) =
1

p2Fk(p2)
. (5.2)

In Figs. 2–4 we show our results for Fk(p2) for a bare
coupling gΛ = 1.4. We plotted this function for different
values of k2, k2 = Λ2, 10−1Λ2, 10−2Λ2, 10−3Λ2, k2 =
k0

2 = 7.43 ·10−5Λ2, as full lines, and for some still smaller
value k2 = k̂2 = 3.68 · 10−5Λ2 as a dashed line. p2 is given
in units of Λ2; the maximal value of p2 is Λ2, 10−1Λ2 and,
in order to resolve the small p2 region, 10−2Λ2 in Figs.
2 to 4, respectively. The curves with decreasing values
at p2 = 0 correspond to decreasing values of k2. We see
that, for small enough k2 and small enough p2, Fk(p2)
approaches a form ∼ p2 near the origin, which corresponds
to a 1/p4-behaviour of the potential Vk(p2).

Just before Fk(p2) becomes 0 for p2 → 0, however, the
two different methods of evaluating ∂km

2
k (cf. (4.2) and

the discussion below) lead to different results for ∂kf1,k or
∂kf2,k, with a relative difference of ∼ 0.1. We denoted the
corresponding scale by k0. For slightly smaller values of k
the equation for the gluon mass term m2

k (3.15) possesses
no longer a solution for m2

k.
The incompatibility of the RG flow with the modified

STIs (3.8) below k0 indicates, that our approximation be-
comes unreliable in this regime: Numerically different re-
sults for ∂kf1,k or ∂kf2,k show, that the neglected con-
tributions play an important role on the r.h. side of the
ERGE for the gluon or ghost propagator, respectively, and
that our ansatz is too restrictive in this regime.

The gluon mass term m2
k itself, which was determined

by (3.15) to be of O(Λ2) at the starting point k = Λ, does
not show an unusual behaviour for k ∼ k0. m2

k is always
of O(k2) or, more precisely, m2

k ∼ −0.6 · k2 for k → k0.
Thus we cannot have confidence in the form of the RG

flow for k < k0. However, generally the RG flow modifies
Fk(p2) only for p2 <∼ k2 (cf. Figs. 2–4), hence our result for
Fk0 is nevertheless trustworthy for p2 >∼ k0

2. Our results
also indicate that, within a more general parametrization
of Γ̂k, Fk(0) approaches 0 for k2 → 0: In Figs. 2–4 we have
shown the function Fk(p2) for some value k2 = k̂2 < k0

2

as a dashed line, and we see that the decrease of Fk(p2) at
p2 = 0 continues. For still smaller values of k2, however,
the integration of the system of differential equations be-
comes numerically unstable and does no longer allow to
obtain reliable results.

In any case, already our results for Fk0(p
2) for p2 >∼ k0

2

strongly indicate a form ∼ p2 near the origin, and the
trustworthy range of p2 may be sufficient for some phe-
nomenological investigations involving, e.g., heavy quarks.

It might be interesting to get some feeling for the or-
ders of magnitude of the different scales involved. Up to
now all scales are only defined relative to the starting scale
Λ. In order to relate this scale to a physical scale one can
try to compare our result for Vk0(p

2), for p2 >∼ k0
2, with a

phenomenological parametrization of this potential, which
contains dimensionful parameters known in units of MeV.
A convenient form of such a parametrization is given by
Richardson [24], which reads in our convention

VR(p2) =
48π2

(33 − 2Nf )p2 ln (1 + p2/Λ2
R)

(5.3)

with ΛR
∼= 400 MeV, and for a rough comparison with

our results (in pure SU(3) Yang-Mills theory) we may set
Nf = 0. In terms of our function Fk(p2) of (5.1) this ansatz
reads

FR(p2) =
11 ln

(
1 + p2/Λ2

R

)
16π2 . (5.4)

We performed a fit of (5.4) to our function Fk0(p
2) for the

region of momenta k2
0 � p2 � Λ2 to determine the ratio

Λ/ΛR. The result is shown in Figs. 5 and 6, where we plot-
ted Fk0(p

2) as a full line and FR(p2), (5.4), as a dashed
line, against p2 in GeV2. The optimized relation between
Λ and ΛR is such that Λ = 12.1 GeV, which implies that
the scale k0, where our approximation ceases to be appro-
priate, is ∼ 104 MeV. One can see that our potential is
surprisingly close to the phenomenological one of Richard-
son, both in the perturbative (Fig. 5) and in the nonper-
turbative (Fig. 6) regime. Significant deviations show up
only for momenta p2 <∼ k0

2.
Let us now look at the dependence of our results on

the bare coupling gΛ. We find that also for larger values of
gΛ, Fk(0) becomes small for small k, until our consistency
condition indicates the inadequacy of the approximation
at some scale k0, with k0

2/Λ2 = 6.13·10−4, 2.69·10−3, and
7.98 ·10−3 for gΛ = 1.6, 1.8 and 2.0, respectively. In Fig. 7
we compare the different results for Fk0(p

2) with gΛ = 1.4
(full line), gΛ = 1.6 (long-dashed line), gΛ = 1.8 (short-
dashed line) and gΛ = 2.0 (dotted line). In each case we
determined the physical value of the starting scale by a
fit to (5.4), and the results for Λ are given by 12.1 GeV,
4.8 GeV, 2.6 GeV and 1.7 GeV for gΛ = 1.4, 1.6, 1.8 and
2.0, respectively. From the values of k2

0/Λ
2 given above,

we then obtain the corresponding values for k0, k0 = 104
MeV, 119 MeV, 134 MeV and 151 MeV. We see that the
curves in Fig. 7 coincide remarkably well, which assures
us that the numerical method we use for the integration
of the ERGEs does not accumulate numerical errors. The
approximate independence of the curves on gΛ or Λ even
for momenta larger than the respective starting scale is
due to the one-loop improvement of the starting action Γ̂Λ

(or of the functions f1,Λ and f2,Λ according to (4.4)). In
Fig. 8 we show the same curves for Fk0(p

2) for the different
values of gΛ or Λ, which have been obtained without the
one-loop improvement.

Figs. 7 and 8 lead to a series of important obser-
vations: First, as we see most clearly from Fig. 8, the
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Fig. 2. Results for the k-
dependent function Fk(p2)
(5.1), which is related to the po-
tential Vk(p2) through (5.2), for
different values of k2, k2 = Λ2,
10−1Λ2, 10−2Λ2, 10−3Λ2,
k2 = k0

2 = 7.43 · 10−5Λ2,
as full lines, and for
k2 = k̂2 = 3.68 · 10−5Λ2

as a dashed line. The bare
coupling gΛ is gΛ = 1.4, and
p2 is given in units of Λ2. The
curves with decreasing values at
p2 = 0 correspond to decreasing
values of k2
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Fig. 3. As in Fig. 2, with a
maximal value of p2 = 10−1Λ2
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Fig. 4. As in Fig. 2, with a
maximal value of p2 = 10−2Λ2

in order to resolve the small p2

region
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Fig. 5. Fit of our result
for Fk0(p

2) (full line) to the
parametrization of Richardson
[24] (dashed line), with an op-
timized relation between Λ and
ΛR

∼= 400 MeV such that Λ =
12.1 GeV
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Fk0(p2), FR(p2)
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Fig. 6. As in Fig. 5, with a
maximal value of p2 = 4 GeV2
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Fig. 7. Results for Fk0(p
2) for

different values of the bare cou-
pling gΛ = 1.4 (full line), gΛ =
1.6 (long-dashed line), gΛ = 1.8
(short-dashed line) and gΛ = 2.0
(dotted line). In each case we de-
termined the physical value of
the starting scale Λ by a fit to
the parametrization of Richard-
son, (5.4)
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Fig. 8. As in Fig. 7, but with-
out the one-loop improvement
of the propagator functions fi,k

at the starting scale Λ

curves are essentially unchanged compared to their form
at the respective starting scale Λ for momenta p2 � Λ2, as
they should be. In particular, the curve for Λ = 1.7 GeV
(gΛ = 2.0) in Fig. 7 is given in the perturbative region es-
sentially by the one-loop form (4.4), so comparison with,
e.g., the curves for Λ = 12.1 GeV (gΛ = 1.4) in both fig-
ures shows, that the integration of the ERGEs correctly
reproduces the one-loop form in the perturbative domain.
More importantly, we find universal behaviour in the non-
perturbative domain: For momenta p2 � Λ2, i.e. below
the respective starting scales, all curves merge in one, as
is most impressively demonstrated by Fig. 8, and the form
of the resulting curve does not depend on the boundary
condition we use. This independence of physics at p2 � Λ2

with respect to variations of the starting scale Λ and to
the inclusion of irrelevant operators at Λ (as is the case
for the one-loop improved boundary conditions) is what
we call universality here, in accordance with [23].

Generally, the running coupling constant in the per-
turbative domain can be parametrized with the help of a
RG invariant parameter ΛQCD. The precise value of ΛQCD

depends on the definition of the running coupling, and it
is RG invariant, in the UV domain, only if the coupling
runs according to the two-loop beta function. The scale k0
can be considered as an example for a dynamically gener-
ated scale. Then, the ratio k0/ΛQCD and hence k0 itself (in
MeV) should be independent of the value of gΛ for Λ large
enough. However, within our parametrization of Γ̂k only a
subset of all possible two-loop diagrams is included within
a perturbative expansion of the ERGEs. Thus a running
coupling gk (defined through, e.g., the ghost-gluon ver-
tex at vanishing external momenta, but nonvanishing IR
cutoff k) and hence gΛ do not yet run according to two-
loop perturbation theory. This explains why k0, as given
in MeV above, is not yet independent of gΛ.

Nevertheless, assuming k0 to be of the order of ΛQCD,
already one-loop perturbation theory implies the following
relation for large Λ:

1

(b0 ln(Λ2/k2
0))

1/2 = gΛ

(
1 + O

(
g2

Λ

4π

))
(5.5)

with b0 = 11/(16π2). From our results we obtain for the
quantity (b0 ln(Λ2/k2

0))
−1/2 the values 1.23, 1.40, 1.56 and

1.72 for gΛ = 1.4, 1.6, 1.8 and 2.0, respectively. Hence (5.5)
is satisfied to the required accuracy.

For practical applications of our results on the heavy
quark potential V QQ̄(p2) it may be useful to see its fi-
nal explicit form (in momentum space). Taking the QCD
colour factors into account, we have with our conven-
tion (3.14) for Vk(p2)

V QQ̄(p2) =
4
3
Vk=k0∼0(p2) . (5.6)

In Fig. 9 we plot our result for V QQ̄(p2) for 0 < p2 <
(5 GeV)2.

Finally, one may ask whether the behaviour of Fk0(p
2)

for p2 → 0 is due to the form of f1,k0(p
2) or both f1,k0(p

2)
and f2,k0(p

2). To this end we plot in Fig. 10 both func-
tions f1,k0(p

2) and f2,k0(p
2) (with p2 rescaled as before)

for gΛ = 1.4. We see that both functions become small for
p2 → 0, but it would be grossly misleading (and unphysi-
cal) to identify the gluon propagator function (p2f1(p2))−1

with the heavy quark potential and to neglect the depen-
dence of V (p2) of (3.14) on f2(p2), as it is done if the
ghost part of the action is neglected, and the STIs are not
properly taken into account.

6 Discussion and outlook

In this paper we have performed the integration of the
ERGEs for non-abelian gauge theories, with the bare ac-
tion as the only input. We concentrated on pure SU(3)
Yang-Mills theory (or quenched QCD), and the momen-
tum dependence of the gluon and ghost propagators; these
quantities determine the heavy quark potential.

The neglect of certain contributions on the r.h. sides
of the ERGEs for the 2-point functions turned the sys-
tem of ERGEs into a closed system of differential equa-
tions, which we integrated numerically. A priori the valid-
ity of the approximation is difficult to judge in the strong
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Fig. 9. The explicit form of our
result for the heavy quark po-
tential V QQ̄(p2) in momentum
space
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Fig. 10. Results for the prop-
agator functions f1,k0 (full line)
and f2,k0 (dashed line) for gΛ =
1.4

coupling regime, where it amounts to the neglect of con-
tributions of the same order in the coupling constant as
the ones maintained. Here the use of modified STIs plays
an important role: Due to their validity parts of the k-
dependent effective action can be determined in two differ-
ent ways, namely either directly through these identities
or by integrating the ERGEs. Without approximations
both methods give the same results, but in the presence
of approximations a possible difference between the corre-
sponding results can be used to estimate the error induced
by the approximations. In our case it was the gluon mass
term, which was obtained in two different ways. We used a
10%-deviation in ∂kf1,k or ∂kf2,k, induced by the different
methods to obtain ∂km

2
k, as an indication for the break-

down of our approximation near the corresponding scale
k0. Accordingly, our result for V (p2) ≡ Vk0(p

2) is only
consistent for p2 >∼ k0

2, where we estimated k0 ∼ 100
MeV. Our main findings are the strong indication of a
1/p4-behaviour of V (p2) in the trustworthy regime of p2,
and the fact that the full form of V (p2) happens to be
close to the one proposed by Richardson [24].

In the second section of this paper we discussed the
formal relation between ERGEs and SDEs, with the re-

sult that effective actions, which solve SDEs in the pres-
ence of an IR cutoff k, can be considered as quasi-fixed
points of the ERGEs. Although this formal relation is no
longer exact in the presence of truncations of effective ac-
tions, it is thus not astonishing, that the behaviour of the
gluon propagator, which has been derived here using the
ERGEs, has also been shown to be a solution to SDEs
in the Landau gauge [17]. We believe, however, that the
present method possesses a number of advantages com-
pared to the formalism of the SDEs: Firstly, the regular-
ization of both ultraviolet and infrared singularities in the
context of the SDEs generates notorious technical difficul-
ties, which require, to some extent, ad hoc prescriptions,
the influence of which on the final result is difficult to con-
trol. The present method is, in contrast, free of problems
related to UV or IR singularities by construction.

Secondly, a priori both methods require a suitable trun-
cation of the effective action. Within the present method,
however, it is technically simpler to include more and more
terms; for the present investigation, e.g., we already in-
cluded the contributions of the 4-gluon vertex and the
ghost fields, which were neglected in the SDE approach
[17]. We have stressed that the detailed form of the dressed
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one-gluon exchange diagram between heavy quarks, which
involves the ghost propagator function at the quark-gluon
vertex due to the STIs, differs considerably from the form
of the inverse gluon propagator alone (in the Landau gauge),
which is not a physical quantity by itself. Moreover, it
is technically feasible in our formalism to include further
terms in the effective action without too much effort.

Finally, within the SDE approach one is only able
to check the self-consistency of a particular ansatz; it is
practically impossible to prove rigorously, that the cho-
sen ansatz is the only possible one. The integration of the
ERGEs, on the other hand, always gives a unique answer,
namely the one which is smoothly connected to the cor-
responding bare action, and to perturbation theory in the
UV in the case of asymptotic freedom. Actually, our dis-
cussion in Sect. 2 sheds some light on the cases where
different solutions of the SDEs exist: on the one hand so-
lutions of the SDEs can be considered as fixed points of
the ERGEs for k → 0, on the other hand it is generally
not clear, whether one has obtained an IR stable or an UV
stable fixed point. Since only the IR stable solutions can
also be obtained by the integration of the ERGEs towards
k → 0, one is lead to the conclusion, that only these are
actually physically relevant, which is certainly difficult to
check within the SDE approach alone.

Many possibilities exist in order to extend the present
approach in the future: firstly, still more terms can be
included in the effective action, and collective fields, e.g.
for F a

µνF
a
µν , can be introduced along the lines of [7, 8] in

order to reach renormalization scales k below k0, and to
get a still better understanding of pure Yang-Mills theory
free of systematic uncertainties for p2 < k0

2. Secondly, the
quark sector of QCD can be introduced as well. First ef-
forts in this direction have already been made in [8]; there,
however, the effects of the gluons have been guessed and
parametrized in a phenomenological manner. Now the in-
tegration of the ERGEs for the full quark gluon system
is within reach (possibly along the lines proposed in [25]),
which will allow to study many phenomenologically inter-
esting systems like heavy qq̄-bound states, qq̄-condensates
and the meson sector on the basis of just the bare QCD
Lagrangian.

Appendix

In this appendix we list some of the functions which are
needed in the actual computations. We begin with the 3-
and 4-gluon vertices employed in our ansatz (3.10) for Γ̂k.
They are chosen in such a way as to fulfill the standard
STIs in a “minimal” fashion. Explicitly they read

f3,µνρ(p, q, r)

= − 1
6f2,k(p2)f2,k(q2)f2,k(r2)

×
{(

qµfg,k(q2) − rµfg,k(r2)
)
δνρ

+
(
rνfg,k(r2) − pνfg,k(p2)

)
δρµ

+
(
pρfg,k(p2) − qρfg,k(q2)

)
δµν

+ (qµ − rµ)
fg,k(q2) − fg,k(r2)

q2 − r2
(rνqρ − q · r δνρ)

+ (rν − pν)
fg,k(r2) − fg,k(p2)

r2 − p2 (pρrµ − r · p δρµ)

+ (pρ − qρ)
fg,k(p2) − fg,k(q2)

p2 − q2

× (qµpν − p · q δµν)

}
(A.1)

and

f4,µνρσ(p, q, r, s)

=
1

4f2,k(p2)f2,k(q2)f2,k(r2)f2,k(s2)

×
{
fg,k((p+ q)2)δµρ δνσ − 2

fg,k(p2) − fg,k(s2)
p2 − s2

× (pσsµ − p · s δσµ) δνρ − 2
fg,k((p+ q)2) − fg,k(p2)

(p+ q)2 − p2

× (2pν + qν) (pρδσµ − pσδµρ) +
2

(r + s)2 − s2

×
(
fg,k(p2) − fg,k((r + s)2)

p2 − (r + s)2
− fg,k(p2) − fg,k(s2)

p2 − s2

)
× (2pν + qν) (2sρ + rρ) (pσsµ − p · s δσµ)

}
, (A.2)

where

fg,k(p2) = f1,k(p2)f2
2,k(p2) . (A.3)

Observe that we have not symmetrized the expression
(A.2) for the four-gluon vertex with respect to momenta
and indices, in order to keep it to a reasonable length.

Next we turn to the modified STI for the gluon mass
term, (3.15). In diagrammatic form it is given by a num-
ber of one-loop diagrams. The integrations over the an-
gular variables of the loop momenta can be performed,
and one is left with integrals over t ≡ q2. After a careful
consideration of the limit α → 0, corresponding to the
Landau gauge, the following expression for the function
ST results:

ST(k2,m2
k, f1,k, f2,k)

=
3

4f2
2,k(0)

∞∫
0

dt
t

k2

{
−e−tf2,k(t)/k2

×
[
3f1,k(t)

1 − e−(tf1,k(t)+m2
k)/k2

tf1,k(t) +m2
k

+
(

3 − 4
t

k2

∂

∂t

(
tf2,k(t)

))
f2,k(t)

1 − e−tf2,k(t)/k2

tf2,k(t)

]

+3e−(tf1,k(t)+m2
k)/k2

[(
4 − 4

t

k2

∂

∂t

(
tf1,k(t)

))
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×f1,k(t)
1 − e−(tf1,k(t)+m2

k)/k2

tf1,k(t) +m2
k

+f2,k(t)
1 − e−tf2,k(t)/k2

tf2,k(t)

]

−6
e−(tf1,k(t)+m2

k)/k2

f2
2,k(t)

t
∂

∂t

(
f1,k(t)f2

2,k(t)
)

×
[(

1 +
t

k2

∂

∂t

(
tf1,k(t)

)
− 2
f2,k(t)

∂

∂t

(
tf2,k(t)

))
×1 − e−(tf1,k(t)+m2

k)/k2

tf1,k(t) +m2
k

− t
∂

∂t

(
tf1,k(t)

)

×
1 −

(
1 + (tf1,k(t) +m2

k)/k2
)
e−(tf1,k(t)+m2

k)/k2(
tf1,k(t) +m2

k

)2

]}
.

(A.4)

Finally we give the one-loop expressions δf1-loop
i for

the gluon and ghost 2-point functions as needed in (4.4)
for the improved boundary conditions. They are calcu-
lated with the IR cutoff functions Rk from (3.16) (with
f1,k and f2,k set equal to one and m2

k = 0) and obey the
renormalization conditions (4.3). The results are, again in
the Landau gauge,

δf1-loop
1 (p2)

=
3g2

Λ

(4π)2

{
13
6

(
ln(x/2) + C

)
− 131

144

−x4 − 8x3 + 9x2 − 20x− 6
12x3 e−x

+
x4 − 16x3 − 16x2 − 56x+ 4

12x3 e−x/2 − x2 − 7x
12

Ei(−x)

+
x2 − 14x− 52

24
Ei(−x/2)

}∣∣∣∣
x = p2

Λ2

(A.5)

and

δf1-loop
2 (p2)

=
3g2

Λ

(4π)2

{
3
4

(
ln(x/2) + C

)
− 3

8

+
3x+ 2
4x2 +

x2 − x+ 2
4x2 e−x − x2 + x+ 2

2x2 e−x/2

+
x

4
Ei(−x) − x+ 3

4
Ei(−x/2)

}∣∣∣∣∣
x = p2

Λ2

, (A.6)

where C denotes Euler’s constant, C ∼= 0.577216. The
exponential integral function Ei is defined by

Ei(−x) =

−x∫
−∞

dt
et

t
(A.7)

for x > 0.
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